小编为你精心整理了13篇《轴对称图形教案》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《轴对称图形教案》相关的范文。
篇1:轴对称图形教案教学内容:
教材第4~5页的例题。
教学目标:
1、让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2、让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重点:
经历发现长方形、正方形对称轴条数的过程。
教学难点:
画平面图形的对称轴。
教学准备:
多媒体课件、书P114页的平面图形。
教学过程:
一、复习导入
出示飞机图、蝴蝶图、奖杯图。提问:这三幅图有什么共同的特征?(都是轴对称图形)
指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)
把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点划线画出对称轴,并板书:对称轴)
思考:怎样判断一个图形是不是轴对称图形?
谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。(把课题补书完整)
二、教学例题
1、师:首先我们研究长方形的对称轴。请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2、指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?
对他的发言有没有不同的意见?
谁还有不同的折法吗?也来展示一下。(指名展示)
提问:为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?
3、师:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
追问:对角线折出来的是轴对称图形么?为什么?他们不是一样的吗?
4、出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?
如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?
如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?
指名到黑板上量长方形的边,取中点。
学生说怎样画对称轴,教师画,画成如右形状(图略),并指出:因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。
5、让学生各自在课本上画长方形的对称轴,画好后同桌检查,并提问:你能画出长方形的几条对称轴?
三、教学“练一练”
谈话:下面我们研究正方形的对称轴。请拿出一张正方形纸,再通过折纸研究它有几条对称轴,再在书上画出正方形的各条对称轴。尽量独立完成,如果有困难可与同桌商量,也可以在小组内研究。
让学生独立画对称轴。
交流:各画出了几条对称轴?你是怎样想的?
先展示只画出两条对称轴的图形,提问:这两条对称轴画得对不对?还有其他对称轴吗?
再展示画出四条对称轴的图形,指着两条对角线所在的对称轴,提问:这两条线也是正方形的对称轴吗?让没画出这两条对称轴的学生折纸看一看这两条线是不是正方形的对称轴,并让他们补画出这两条对称轴。
提问:正方形有几条对称轴?
四、教学例5
(1)让学生读题后自己在书上作图。
(2)展示部分学生的答案,共同评议。
(3)提问:谁能以左图为例说一下作图的步骤?(先找出四个对应的顶点再连线)
五、课堂总结
提问:这节课你对轴对称图形有了哪些新的认识?你学到了什么本领?有什么收获?还有不明白的问题吗?
六、课堂作业
1、课堂作业:《补充习题》第3页。
2、家庭作业:《伴你学》第3页。
板书设计:
3、轴对称图形
图形是否为轴对称图形对称轴条数
任意三角形否0
等腰三角形是1
等边三角形是3
等腰梯形是1
平行四边形否0
长方形是2
正方形是4
圆是无数条
篇2:轴对称图形教案轴对称图形教案
《轴对称图形》教学设计 佛冈一小郑秋燕 一、教学内容:义务教育课程标准实验教科书五年级下册第3-第4页。 二、教学目标: 1、通过观察、操作活动,使学生进一步认识图形的轴对称,探索图形成轴对称的基本特征和性质,并能在方格纸一画出一个图形的轴对称图形。 2、从历史的角度观察,感受数学的应用价值美学价值。 3、通过轴对称图形的变化,培养学生的空间想像能力和思维能力。 三、教具、学具准备:课件、轴对称图形卡片。四、教学重难点:探索图形成轴对称的基本特征和性质,并能在方格纸一画出一个图形的轴对称图形。 五、教学过程: (一)创设情景,激趣导入 出示一张米老鼠图,(耳朵不对称)引发学生大笑,然后引入新课。 (二)认识对称图形1、电脑展示课本枫叶、蜻蜓、天平的图。 提问:这些图形美丽吗?它们都有什么共同特点呢? (课件演示它们是对称的) 2、动手实验 ①师:像这样左右两侧对称的图形你能动手做出来吗?用你喜欢的方法,设计一种自己喜欢的`图案。(学生活动,有折、剪、画、印等方法) ②小组交流作品,课堂展示。 3、观察讨论 ①看着同学们剪出的图形你又有什么新的发现(讨论、交流轴对称图形的基本特征) ②像上面这些图形都是轴对称图形→板书完课题。你能用自己的话说说什么是轴对称图形吗?(一个图形对折后,左右两边完全重合,像这样的图形就叫对称图形) ③认识对称轴及其画法 让学生对折所剪图形,问:每个对称图形中间都有一条折痕,你能不能给这条折痕取一个名字?(对称轴)(师画虚线) 4、联系生活实际、丰富感性认识。 你能列举生活上的对称图形 ……此处隐藏11600个字……些是轴对称图形呢?你是怎么发现的,你能很快地向大家展示一下你的方法吗?(三角形:这种三角形是轴对称图形。梯形:这种梯形是轴对称图形。
五边形:这种五边形是轴对称图形。
长方形:还有谁和他折得不一样?
长方形除了竖着折两边能完全重合,横着折也可以。(教师演示)
正方形:正方形也有几种折法可以使两边完全重合
那有没有不是轴对称图形的呢?你怎么会认为它不是呢?
4、制作一个轴对称图形
同学们,我们已经认识了什么是轴对称图形,那你想不想自己动手来制作一个呢?在动手之前,我们先来开个小小讨论会,每个小组讨论这三个问题:
(1)做什么图形?
(2)选什么工具?
(3)怎么分工?
好,开始!
学生讨论。
你们讨论出一个方案了吗?
那就请大家各显神通吧,我们来比一比哪个小组的作品最有创意。
教师巡视,要是他们时间够的话可以请他们多做一个。要是发现做两个的,请他们展示做的好的那个。
交流:你们做的是什么图形?是怎么做的?
三、识别轴对称图形
1、今天我们认识了什么图形?在我们的生活中到处都可以找到它。
现在就请同学们在纸上的这些图形中找出哪些是轴对称图形。
谁上台来说说你找到了哪些是轴对称图形?
紫荆花:它为什么不是呢?教师拿教鞭在屏幕上一指,因为它里面的图案对折后两边不能完全重合。
为什么是呢?/谁有不同意见。这就说明并不一定要左右对称才行,换个方向对折也可以,一次折不出,就多试几次。
2、画一画。
请同学们看第二张纸,图上都只画出了每个图形的一半,你能画出它们的另一半,使它成为一个轴对称图形吗?
我们先来画第一个。
请你说说你是怎么画的?还有其他画法吗?
第二种画法更容易。
先观察给出的一半图形,确定另一半图形的各个顶点,再连点成线比较容易。
再来画一下第二个。
请一个学生来展示一下。
你和他一样吗?
四、全课小结
好,现在我们来轻松一下,请同学们看这,教师表演剪纸。谁来说说我刚刚剪纸时运用了什么知识?课后请同学们到生活中去寻找一下,看看哪些地方也用到了轴对称图形的知识。
你还能想到轴对称图形在生活中的作用吗?
五、机动:连一连
你是怎么判断的?
教学后记:第一节课,笑话百出,就到对称图形,王玲灵说有衣服、裤子;罗润城说我的屁股也是,全班哄堂大笑……
对于平行四边形是不是轴对称图形这个问题,学生展开了热烈的讨论,甚至剪了图形来画、对折。有些学生的空间感十分强,一看图形就能说出哪些地方是不能完全重合的(陈慧婷等),可有的学生就是不死心(覃旭、罗润城等),我为孩子们这种探究精神感到由衷的高兴。最后得出结论,平行四边形不是轴对称图形,虽然耽搁了时间,没有完成教学任务,可我认为还是值得的。
篇13:《轴对称图形》教案【学习目标】:
1、经历探索等腰三角形的轴对称性的过程,进一步理解轴对称的性质,发展空间观念;
2、探索并了解等腰三角形的轴对称性及其相关性质;
【主要问题】:
等腰三角形有哪些性质?等边三角形有哪些性质?
一、基础知识回顾
1、下列图形不一定是轴对称图形的是( )A、圆 B、长方形 C、线段 D、三角形
2、以下结论正确的是( ).
A.两个全等的图形一定成轴对称 B.两个全等的图形一定是轴对称图形
C.两个成轴对称的图形一定全等 D.两个成轴对称的图形一定不全等
3、轴对称图形对应点连线被 ,对应角对应线段都 .
4、设A、B两点关于直线MN成轴对称,则 垂直平分 .
5、三角形的周长等于 ,三角形的内角和是 .
6、怎样的三角形是轴对称图形?答: 。
7、如图(1), △ABC中,AB=AC,请在图中标出此三角形各边和各角的名称。
二、新知识产生过程
问题1:等腰三角形有哪些性质?请阅读课本P121
8.等腰三角形是轴对称图形吗?如果是,请在图(2)中画出它的对称轴.
你是如何找到等腰三角形的对称轴的? .
等腰三角形的对称轴是什么? .
A.顶角的平分线所在的直线 B.底角的平分线所在的直线
C.底边上的高所在的直线 D.底边上的中线所在的直线
9.当你把等腰三角形沿它的对称轴对折后,你能发现等腰三角形有哪些特征?
把△ABC沿折痕AD对折,找出其中重合的线段和角,填入下表(如图(3))
(关键操作:对折、重合)
10.归纳等腰三角形的性质:
性质1 .
性质2
性质3 .
11、根据等腰三角形性质定理,如图(4),在△ABC中, AB=AC时,
(1) ∵AD⊥BC,∴∠_____ = ∠_____, = .
(2) ∵AD是中线,∴____⊥____ ,∠_____ =∠_____.
(3) ∵AD是角平分线,∴____ ⊥____ ,_____ =_____.
12、等腰三角形一个底角为70°,它的顶角为 .
问题2:等边三角形的哪些性质?
13、等腰三角形中有一种特殊的等腰三角形是 三角形,
即 叫等边三角形。
14、等边三角形是轴对称图形吗?
如果是,请你在图(5)画出等边三角形的对称轴
你能画出几条对称轴?
15、当你把等边三角形沿它的对称轴对折后,
你能发现等边三角形有哪些特征?
16、归纳等边三角形性质:
性质1:等边三角形是 图形,它有 条对称轴.
性质2:等边三角形 相等.
17、课本P121 “议一议”:你有哪些办法可以等到一个等腰三角形?(课堂上小组交流)
三、巩固练习:
18、等腰三角形一个角为70°,它的另外两个角为
19、等腰三角形的两边长分别为6,8,则周长为 ;等腰三角形的周长为14,其中一边长为6,则另两边分别为
20、如图(6),在△ABC中,AB=AC,∠B=70度,点D为BC的中点,
求∠BAD的度数.
20、如图(7),△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
四、提高题:
21、如图(8)所示,在△ABC中,AB=AB,FD⊥BC,DE⊥AB,垂足
分别为D,E,∠AFD=158°,求∠EDF的度数.