【导语】乘法分配律教案(新版多篇)为网友投稿推荐,但愿对你的学习工作带来帮助。
乘法分配律教案 篇一【关键词】:乘法分配律 探究算理 建立模型 充分变式 提炼生活
乘法分配律是小学教学的重点和难点,乘法分配律在数学简算中占有相当重要的位置,学生从四年级起就开始了整数乘法分配律的学习,五、六年级推广到小数、分数。其数理抽象,逻辑严密,尤以“难”字突出,乘法的分配律可以说是年年教年年学,可是就有相当一部学生学不会、记不住。乘法分配律成了中、高年级教学啃不动的“硬骨头”。本学期我又面临这部分教学内容,如何使学生更容易的接受这部分知识,课前我进行了仔细的琢磨和深入的思考,通过不断的实践,摸索出了一些教学乘法分配律的一些有效的方法,并取得了良好的效果。借此活动之际,和老师们共同商榷,具体分为三个阶段进行:
第一阶段:追本溯源 建立模型
我认为乘法分配律教学应该从最核心最本质的乘法的意义入手,根据意义建立模型,让学生充分感知、经历、实践,夯实乘法分配律知识的建构,我潜心设计了五个环节:探究算理--举例验证--尝试推广--建立模型找到学生认知的起点,分解知识的难点,让乘法分配律的知识在学生的大脑中真正构建,提高学习的效率。
教学片段:
师:请你根据意思写出算式并算一算(课件出示)
25个8是多少?
20个8和5个8的和是多少?
(乘法分配律的萌芽开始出现)
师:我们已经学习了乘法的意义,请你说一说101×24表示什么意义?
生1:101个24是多少?
生2:100个24加上1个24的和是多少?
师:如果让你算一算101×24结果,你打算怎样算?
(有意“挑衅”,逐步拉近学生和乘法分配律的距离)
生:用100个24加上1个24
(师板书:(100+1)×24=100×24+1×24)
师:先口算等式右边的结果是多少?再笔算等式左边的结果,你能验证这种思考方法的正确性吗?(学生验证)
师:请你认真观察等号左右两边的算式有什么联系?小组讨论,交流汇报。(从乘法的意义出发慢慢让学生开始建模乘法分配律,这个环节学生已经初步体会出乘法分配律最本质的变化“分别去乘”,分配律模型已见雏形)
师:你还能用这种方法继续计算吗?
课件出示:(40+8)×125 (25+8)×4
(强化模型,并让学生用趋于规范的语言来表达方法,同时继续通过计算左边的算式验证模型的有效性)
提出猜测:是不是所有“(+)×”这样的算式都可以用这种方法计算而结果不变呢?(通过猜测,将模型推广,检验它的普遍适用性。)
放手让学生通过大量不同数的举例,纷纷赞同。(学生通过模型的自主应用发现了规律的普遍适用性,接着引导学生用比较规范的语言描述模型,然后揭示课题名称,从名称中再次体会“分配”与模型之间的内在关系。通过环环相扣、层层深入的教学设计,乘法分配律的基本模型在学生的头脑中建立起来了。
第二阶段:充分变式 吃透模型
通过以上的教学片段,学生对乘法分配律的模型会有一个基础建构,尽管基础模型至关重要,但模型的变式也必不可少,通过练习巩固环节,用填空题和判断题两种方式将乘法分配律的变式进行充分的展示。并将几种典型的错误进行提前干预,要注意以下几点:
1、乘法分配律的逆向运算
对于分配律“算理”的理解以及模型的建构只要找到乘法算式中相同的因数,对相同因数的个数进行相加减就可以应用,但在后续练习中还会出现如“56×99+56”,“ ×1”的省略,使一些学生找不到模型,再如“888×7+44×111”这道题需要通过拆分某个数才能找到相同的因数,学生除了理解与建构之外,还得有良好的数感。
2、乘法分配律与结合律的混淆
对各种规律“算理”的理解是关键,比较区别是良好的方法,通过充分比较结合律与分配律“意”的不同与“形”的不同,发现结合律只适用于连乘和连加算式,而分配律中出现了两种或两种以上的不同的运算符号,就会避免如下的错误:25×(2×8)=25×2+25×8
3、算式殊数字的影响,造成模型缺失
在具体计算过程中即便是学生理解了算理,但在遇到如下题目:“(1000-125)×8”还会受到数对125×8的影响,很容易算成“1000-125×8”。
4、乘法分配律对减法通用性的理解
在建立起来的模型中,小括号里的运算符号是“+”号,在后续的练习中还会遇到小括号里是“-”如“(25-8)×4”的题目,学生通过计算发现,可以用括号里的两个数分别相乘,再相减,计算更简单,由此可知,乘法的分配律对括号里是减法的运算同样适用。
第三阶段:提炼生活 升华模型
乘法分配律教案 篇二关键词:小学数学;简便计算错误;成因分析;对策
一、知觉性错误
1、错题例选:55×20=(11×5)×20=(11×20)×(5×20)=220×100=22000
2、成因分析:因为乘法的结合律与乘法分配律的表现形式极其相似,稍不注意就会导致部分学生造成知觉上的错误,把乘法结合律与成乘法分配律乱套乱用,形成老虎老鼠傻傻分不清楚,这说明学生没有充分理解这两条运算定律,乘法分配律是乘法对两数之和或两数之差的分配律。乘法结合律则是三个或三个以上数连乘时,数字之间的运算顺序可以交换,像上面这个题目选用乘法分配率就是错的,应当选择乘法交换律或者是乘法结合律。
3、解决办法:像这样的情况,简单地套用公式已经没有效果了,要主动去引导学生找出二者之间的区别,例如,乘法分配律只能在括号里面是加法或者减法时才能运用,括号里面是乘号时运用乘法分配律就是错误的,教师可以从结合律与分配法则的定义下手,通过形象具体的描述,让学生充分理解,引导学生自己去进行比较两条预算定律的异同之处,找出自己错误的原因并加以改正。教师可以布置不同的作业练习,让学生在运算的过程中区分两种运算定律和运用后两种运算定律产生的简便程度,进一步加深学生区分这两种运算定律的印象。例如:55×20=(1l×5)×20=(50+5)×20=11×(5×20)=40×25+4×25=1l×100=1000+100=1100
二、定势性错误
1、举例说明:学生做题目时,经常遇到比较大的数字计算,例如:123×14+72×25这类题型,很多学生会束手无策,更多地是选择向老师求助。
2、成因分析:这种现象一般较多出现在简便计算,特别是学习成绩不理想的学生眼里,这是一大难题,学会简便运算,遇到能简便运算的题目,就会很快得出结果,遇到不能简便运算的题目时 ……此处隐藏2317个字……p>
预设3:第一种方法比较简便。
(二)研究素材,发现规律
出示课件。
谈话:仔细观察以上各个算式,想一想他们与12×9-8×9=(12-8)×9有着怎样的联系?现在,小组合作,算一算两边的结果,比较两边的算式,是否相等?你发现了什么规律?
预设1:两边的算式相等。
预设2:两个数的差乘第三个数,等于把这两个数分别乘第三个数,再把积相减。
【设计意图】采取小组合作的学习方式,在合作过程中留给学生充足的自主探究时间,提高了学生自主学习的能力,让学生们畅所欲言,积极想办法找规律解决问题,帮助学生积累数学活动的经验,使学生在合作交流过程中体会数学的乐趣。
三、讨论交流,验证规律
谈话:这难道是一个规律吗?让我们一起验证一下吧!
预设:54×15-34×15=(54-34)×15
999×36-899×36=(999-899)×36……
小结:因而我们可以说两个数的差乘第三个数等于把这两个数分别乘第三个数,再把积相减是一个规律。
提问:你能用字母表示这个规律吗?
预设1:(a-b)c=ac-bc
预设2:ac-bc=(a-b)c
提问:乘法分配律用字母怎么表示?
预设:(a+b)c=ac+bc
小结:两个数的差乘一个数也有类似乘法分配律那样的关系,也可以用于简便计算。
【设计意图】学生通过计算、比较、猜想、验证得出乘法分配率的规律,在探究的过程中学生能够充分观察、计算、比较,并获得正确的数学思想,进一步提高学生推理概括的能力,发展学生的推理能力。
四、反思回顾,提升方法
谈话:刚才我们通过计算两边的得数是否相同,接着通过比较猜想发现规律,再举例进行验证,最后得出了两个数的差乘第三个数等于把这两个数分别乘第三个数,再把积相减是一个规律。
【设计意图】通过小结,对知识进行梳理,让学生系统地所学知识形成知识树,内化数学思想方法,使学生在在掌握知识的同时,体验数学思想方法。
五、巩固拓展,应用规律
1.运用所学规律计算。
先独立思考,后全班交流并说一说是怎样做的。进一步加深对乘法分配律二的理解。
2
.运用规律解决生活中的实际问题。
通过解决购物问题,灵活运用乘法运算律。先独立解答,后全班交流,学会选择简便方法
3.
对乘法分配律二的延续巩固练习。
独立思考,后全班交流。引导学生总结运用乘法分配率进行简便计算的经验与方法
【设计意图】通过有层次练习不仅让学生进一步巩固了本节课的知识,更加体会到数学源于生活,让学生能自觉熟练的运用规律解决实际问题,内化数学思想方法,提升学生的数学思考能力以及数学素养。
六、反思回顾,总结提升
谈话:通过这一节课的学习,你有哪些收获?
预设1:学会了乘法分配律(二)能使计算简便。
预设2:学会了猜想验证总结的的数学方法方法。
预设3:我觉得生活中处处有数学。
谈话:你想将这节课的“积极”、“合作”、“会问”、“会想”、“会用”这五个苹果送给谁?为什么?
乘法分配律教案 篇五本案例的教学内容是人教版第十一册“整数乘法运算定律推广到分数乘法。”在教学过程中,我尝试着从单纯的计算技能教学走出去,运用“再创造”原理对教材进行了二次开发,取得了良好的教学效果。现撷取其中的几个片段,供大家评价。
片断一:
教师在黑板上出示两道乘法算式:12×4、4×12
提问:他们相等吗?(学生回答后教师用等号连接两个算式)12×4=4×12
师:看到这个算式你回忆起了什么知识?
生:乘法交换律。
师:你能用字母表示乘法交换律吗?
生:a×b=b×a
师:这里的字母可以表示什么数?
生:字母a和b可以表示分数、小数、整数。
师:字母a和b表示分数,你能举例说明吗?
学生思考片刻后——
生1:1/2×1/3=1/6,1/3×1/2=1/6,所以1/2×1/3=1/3×1/2。两个分数交换他们的位置,积不变。
生2:1/4×4/5=1/5,4/5×1/4=1/5,所以1/4×4/5=4/5×1/4。我认为分数乘法也有乘法交换律。
生3:1/2×3/5=3/10,3/5×1/2=3/10,所以1/2×3/5=3/5×1/2。乘法交换律在分数乘法中同样适用。
师:对,整数乘法运算定律在分数乘法中同样适用。
……
反思:从学生熟悉的字母公式入手,变直接出示题目计算验证为学生自己举例验证,既训练了学生的思维能力,有培养了学生的口头表达能力。学生能够有条理较清晰地述说自己的思考过程,并在教师的引导下,很快完成了其余两个定律的举例验证,能有理有据地说出自己的思考过程。
片段二:
出示题组:(3/4+1/5)×4 (1/3+2/7)×5
师:请同学们仔细观察这两道题中每一个数的特点,动笔前先思考怎样比较简便?
生1:第一题运用乘法的分配律可以使计算简便。(3/4+1/5)×4=3/4×4+1/5×4。
生2:第二题这样计算比较简便。(1/3+2/7)×5=1/3×5+2/7×5。
生3:我认为第二题这样计算不简便。先算括号里的加法比较好,而第一题用分配律做简便。
师:第一题简便的方法大家意见一致,第二题有两种不同意见。老师建议每个人把这两种方法都试一试,自己体验怎么做比较好。
学生完成计算后交流。
生1:我认为两种方法都可以,随便选择那一种。
生2:我认为用乘法分配律做反而麻烦,先算括号里的加法比较好。通分时分母小,好计算。
生3:我认为用分配律做这一题并不简便。
师:第二题的数怎么改用乘法分配律做就比较简便呢?
生1:1/3改成1/5。
生2:2/7改成1/5。
生3:两个数都改,1/3改成1/5,2/7改成2/5。
生4:把乘5改成乘7或乘5改成乘3.
师:如果括号里的分数不变,括号外面的数怎么改可以使计算变得更简便?
生5:我想可以改成21,但不知对不对。
生6:对!对!应该是3和7的公倍数。
生7:应该是3和7的最小公倍数,是分母的最小公倍数。
反思:以题组行事出示两道例题,引导学生先观察后计算,有利于培养学生良好的计算习惯。封闭的计算题实施开放式教学,为计算教学注入了活力,学生兴趣高涨,思维活跃。
评析:
你也可以在搜索更多本站小编为你整理的其他乘法分配律教案(新版多篇)范文。